Developing the European Road Safety Decision Support System

P. Thomas, Loughborough University, UK
Presentation to the 5th International Cycle Safety Conference
Bologna, 3 November 2016
SafetyCube concept

- Problem
 - Evidence based road safety policies are becoming more usual and there is much better availability of national data to describe the problem areas
 - Effective road safety policies need good information about accident risk factors and about measures
 - Impact studies are typically used to assess viability of road safety measures
Accessing the evidence base

- Much of the evidence on risks and measures is in the research literature – how can it be brought together?
- How can we assess transferability of measures from one country to another?
- How can the available information and data be synthesised?
Challenges of the evidence based approach

- Do we have a comprehensive method to identify risks and measures?
 - Road, road users and vehicles
- How do we estimate the likely casualty reduction of a measure that has not been introduced to the real-world?
- Do we have a comprehensive method to evaluate cost-effectiveness?
- How do we handle the situation where there are many measures of effectiveness but they disagree?
What is a risk?

- “Risk factor” denotes any factor that contributes to accidents or injuries.
- There are risk factors related to all elements of the road system and the interactions between these elements.
- The importance of a risk factor can be defined as the size of the contribution it makes to accidents or injuries.
What is a measure?

• A measure is any action intended to reduce the numbers of accidents or injuries.
 – *May reduce the risk of a crash*
 – *May reduce the risk of injury*
 – *May reduce exposure to risk*
Example: taxonomy of infrastructure risk factors and measures

More than 90 risk factors and 95 measures in 15 infrastructure areas

Exposure
- Traffic flow
- Traffic composition

Road safety management
- Road safety audits, inspections etc.
- Blackspots treatment
- Speed management

Horizontal alignment
- Road curvature (curve radius, curve frequency, transition curves etc.)

Vertical alignment
- Gradient
- Vertical curvature (sight distance)

Cross-section
- Superelevation, cross-slopes
- Lanes (number, type, width)
- Shoulder (type, width)
- Median / barrier

Roadside
- Guardrails, obstacles, visibility
- Sidewalks, cycle lanes

Road surface
- Friction
- Uneven surface
- Oil, leaves, ice, snow etc.

Junctions alignment
- Roundabouts
- Interchanges & ramps
- At-grade junctions
- Channelization (left turn lanes, traffic islands)
- Rail/road crossings

Traffic control
- Speed (speed limits, section control, speed humps)
- Traffic signs
- Delineation and Road markings
- Traffic signals (installation, timing)
- ITS (VMS, V2I)

Lighting

Workzones

Road type

Weather
Methodology-Guidelines and tools

- A taxonomy of study designs
- Different estimators of effects
 - Crash Modification Factor (CMF)
 - Absolute difference
 - Regression coefficient / slope
 - Odds ratios
 - Accident rates ratios
Coding template and database

- A template for coding research studies and existing results (excel)
- A template for summarising results / meta-analysing
- The templates of coded studies will undergo a thorough checking and debugging process, in order to be eventually stored in a relational database, which will serve as the back-end of the DSS
DSS-Analysis of user needs

• Stakeholders from government, industry, research, and user associations.

• The DSS should be suitable for use by a wide range of end users, not be limited to EU policy makers, but also local authorities.

• The DSS should have the following characteristics:
 – include robust data which allow for critical analysis and transparency
 – access to the studies used and to all results as well
 – information of the best quality studies and recommendations
Progress to date

- **Wealth of risks, countermeasures and studies** related to behaviour, road infrastructure and vehicle (CMF approach).
- Already analysed approx. **500 studies**, and many more in progress.
- Updated more than **20 existing meta-analyses**, about 65 more in progress.
- The **design of the DSS** is finalized and the first static prototype of the DSS has been prepared.
- The **DSS testing phase** (with test tables) will be ready in Spring 2017.
- The **DSS Pilot Operation** will start on July 2017.
- The **final opening of the DSS** will start on September 2017 and will be constantly updating from April 2018 and onwards.
Contact

- www.SafetyCube-project.eu
 - Newsletter
 - Blog
 - Surveys
 - Interactions

- Pete Thomas

- Professor of Road and Vehicle Safety

- p.d.thomas@lboro.ac.uk

- Smart and Safe Mobility Research Cluster
- Loughborough University
- Leicestershire
- LE11 3TU
- United Kingdom
- Tel: +44 (0)1509 226931