

Developing the European Road Safety Decision Support System

P. Thomas, Loughborough University, UK Presentation to the 5th International Cycle Safety Conference Bologna, 3 November 2016

Co-funded by the Horizon 2020 Framework Programme of the European Union

SafetyCube concept

Problem

- Evidence based road safety policies are becoming more usual and there is much better availability of national data to describe the problem areas
- Effective road safety policies need good information about accident risk factors and about measures
- Impact studies are typically used to assess viability of road safety measures

Accessing the evidence base

- Much of the evidence on risks and measures is in the research literature – how can it be brought together?
- How can we assess transferability of measures from one country to another?
- How can the available information and data be synthesised?

Challenges of the evidence based approach

- Do we have a comprehensive method to identify risks and measures?
 - Road, road users and vehicles
- How do we estimate the likely casualty reduction of a measure that has not been introduced to the real-world?
- Do we have a comprehensive method to evaluate costeffectiveness?
- How do we handle the situation where there are many measures of effectiveness but they disagree?

What is a risk?

- "Risk factor" denotes any factor that contributes to accidents or injuries.
- There are risk factors related to all elements of the road system and the interactions between these elements.
- The importance of a risk factor can be defined as the size of the contribution it makes to accidents or injuries.

What is a measure?

- A measure is any action intended to reduce the numbers of accidents or injuries.
 - May reduce the risk of a crash
 - May reduce the risk of injury
 - May reduce exposure to risk

Example: taxonomy of infrastructure risk factors and measures

More than 90 risk factors and 95 measures in 15 infrastructure areas

Exposure

Traffic flow
Traffic composition

Road safety management

Road safety audits, inspections etc.
Blackspots treatment
Speed management

Horizontal alignment

Road curvature (curve radius, curve frequency, transition curves etc.)

Vertical alignment

Gradient

Vertical curvature (sight distance)

Cross-section

Superelevation, cross-slopes Lanes (number, type, width) Shoulder (type, width) Median / barrier

Roadside

guardrails, obstacles, visibility Sidewalks, cycle lanes

Road surface

Friction

Uneven surface

Oil, leaves, ice, snow etc.

Junctions alignment

Roundabouts Interchanges & ramps At-grade junctions

Channelization (left turn lanes, traffic islands)

Rail/road crossings

Traffic control

Speed (speed limits, section control, speed humps)

Traffic signs

Delineation and Road markings Traffic signals (installation, timing)

ITS (VMS, V2I)

Lighting

Weather

Workzones

Road type

Methodology-Guidelines and tools

- A taxonomy of study designs
- Different estimators of effects
 - Crash Modification Factor (CMF)
 - Absolute difference
 - Regression coefficient / slope
 - Odds ratios
 - Accident rates ratios

Coding template and database

- A template for coding research studies and existing results (excel)
- A template for summarising results / meta-analysing
- The templates of coded studies will undergo a thorough checking and debugging process, in order to be eventually stored in a relational database, which will serve as the back-end of the DSS

DSS-Analysis of user needs

- Stakeholders from government, industry, research, and user associations.
- The DSS should be suitable for use by a wide range of end users, not be limited to EU policy makers, but also local authorities.
- The DSS should have the following characteristics:
 - include robust data which allow for critical analysis and transparency
 - access to the studies used and to all results as well
 - information of the best quality studies and recommendations

Progress to date

- Wealth of risks, countermeasures and studies related to behaviour, road infrastructure and vehicle (CMF approach).
- Already analysed approx. 500 studies, and many more in progress.
- Updated more than 20 existing meta-analyses, about 65 more in progress.
- The design of the DSS is finalized and the first static prototype of the DSS has been prepared
- The DSS testing phase (with test tables) will be ready in Spring 2017.
- The DSS Pilot Operation will start on July 2017.
- The final opening of the DSS will start on September 2017 and will be constantly updating from April 2018 and onwards.

Contact

- www.SafetyCube-project.eu
 - Newsletter
 - Blog
 - Surveys
 - Interactions
- Pete Thomas
- Professor of Road and Vehicle Safety
- p.d.thomas@lboro.ac.uk

- Smart and Safe Mobility Research Cluster
- Loughborough University
- Leicestershire
- LE11 3TU
- United Kingdom
- Tel: +44 (0)1509 226931