Reporting road traffic serious injuries in Europe. Guidelines

Catherine Pérez, MPH, PhD
Agència de Salut Pública de Barcelona (ASPB)
Background

- Reducing the number of serious traffic injuries is one of the key priorities in the road safety programme 2011-2020 of the European Commission (EC, 2010).
- In January 2013, the High Level Group on Road Safety, representing all EU Member States, established the definition of serious traffic injuries as road casualties with an injury level of MAIS ≥ 3.
- The High Level Group identified three main ways Member States can collect data on serious traffic injuries (MAIS ≥ 3):
 1. by applying a correction on police data,
 2. by using hospital data and
 3. by using linked police and hospital data.
- Currently, EU member states use different procedures to determine the number of MAIS ≥ 3 traffic injuries, dependent on the available data.
- The impact of this heterogeneity on final estimations is unknown.
Objectives

Describe the current state of collection of data on serious traffic injuries across Europe

Provide practical guidelines for the estimation of the number of serious traffic injuries for each of the three ways identified by the High Level Group

Examine how the estimated number of serious traffic injuries is affected by differences in methodology.
Methods I

The practical guidelines for the determination of the number of serious traffic injuries were developed using:

- A survey carried out to experts in EU Member States
- Current practices and experiences from a number of countries
- Specific analysis to the same data for different procedures were applied
Methods II

- **Methods to apply correction factors using data from Belgium, France and Austria**
- **Inclusion and exclusion criteria using Hospital data & sensitivity analysis**
- **Methods to derive MAIS, using data from Spain, Belgium, the Netherlands and Germany.**
- **Record linkage with data from France, the Netherlands and Slovenia**

Current practices and experiences from a number of countries
Results
State of data collection on serious traffic injuries across Europe (June 2016)

- Only 17 of the 26: MAIS ≥ 3 estimates to DG-MOVE
- Difficulties to get access to hospital discharge data
- 9 hospital data, 2 corrections to police data, and 4 record linkage of police and hospital data. France and Germany apply a combination
- The ratio of MAIS ≥ 3 casualties / fatalities differs considerably between these countries, from 0.6 MAIS ≥ 3 in Poland to 13.2 MAIS ≥ 3 in the Netherlands
Results
Applying correction on police data

WHEN:
- In case you there is no hospital data for the entire country and/or every year
- In case hospital data becomes available at a too late stage

HOW:
- Use a sample of hospital data (previous years and/or part of the country)
- Derive and apply multiple correction factors
- Update correction factors on a regular basis.
Results
Using of hospital data (I)

WHEN:
In case hospital data of good enough quality is available and record linkage with police data is not available

HOW

- Select patients with **external causes for road traffic injuries** (public road): ICD9CM: E810-E819, E826, E827, E829, E988.5; ICD10: V01-89 for those codes for traffic injuries and/or weighting -correcting for non-public road- for non-traffic injury codes

- Exclude hospitalized fatalities within 30 days

- **Exclude readmissions** (as well as scheduled admissions when they are a second episode of a previous emergency injury)

- Select all cases with any **injury diagnosis** (ICD9CM: 800-999; ICD10: S00-T88; AIS injury)

- In case of ICD coded injuries, **assess the severity (AIS)** of each injury using a ICD to AIS recoding tool (e.g. ICDpic, AAAM, ECIP/Navarra)
Other issues to consider with hospital data

- **External causes** (E/V-codes) may be missing or misspecified for many casualties. Compensate for these missing E-codes by using information from additional sources.

- Traffic Crashes happening on **public roads** should be selected (country specific weighting factor).

- **Different versions of AIS**: multiplied by a factor 0.89 when injuries are coded in AIS1990 or AIS1998 instead of AIS2005 or AIS2008

- **ICD to AIS recoding tool** applied. Current version of the AAAM10 (2016) tool results in a clear underestimation of the number of MAIS3+ casualties and the tool is not able to deal with truncated codes

- **Limited number of injuries**: can result in an underestimation. Weighting factors: 1.28 in case of 1 injury, 1.11 in case of 2 injuries, 1.05 in case of 3 injuries

- **ICD codes** are truncated leads to a less reliable selection of MAIS3+ casualties. Not use ICDpic and AAAM10 tools. Weighting: 1.06 in case of ICDmap90 or DGT, 1.03 in case of ECIP, 1.11 in case of AAAM9
Results
Applying record linkage

WHEN:
In case the selection of MAIS3+ road traffic casualties is problematic (missing Ecodes)

HOW:

- Link hospital and police (and possibly other sources) on the basis of variables that are common to in both data sources
- Ideally, linkage is based on a unique personal identification number (**deterministic linkage**), but this is rarely available for privacy reasons
- When deterministic linkage is not possible, **probabilistic or distance based** linkage is recommended.
- Once the linkage is completed, the number of serious traffic casualties recorded in hospital data but not identified as such can be estimated using the **capture-recapture method**.
Conclusions

All three methods for estimating the number of serious traffic injuries – (1) applying correction factors to police data; (2) use of hospital data; (3) linking police and hospital data – have both advantages and limitations. Which method(s) to choose will depend on the context and constraints of each individual country.

Further harmonisation of methods over the next years is desirable in order to ensure that the estimated numbers of MAIS ≥ 3 road traffic injuries are comparable across Europe.
Thank you

The team:

- Pérez, K., Olabarria, M. (ASPB, Agència de Salut Pública de Barcelona), Spain
- Weijermars, W., Bos, N., Houwing, S. (SWOV Institute for Road Safety Research), Netherlands
- Machata, K., Bauer, R. (KFV, Austrian Road Safety Board), Austria
- Amoros, E., Martin, J.L., Pascal, L. (IFSTTAR, French Institute of Science and Technology for Transport, development and Networks), France
- Filtness, A. (LOUGH, Transport Safety Research Centre, Loughborough University), United Kingdom
- Dupont, E., Nuyttens, N., Van den Berghe, W. (BRSI, Belgian Road Safety Institute)
- Johannsen, H. (MHH, Medical University of Hannover), Germany
- Leskovsek, B. (AVP, Slovenian Traffic Safety Agency), Slovenia

http://www.safetycube-project.eu/

Thank you